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Passive scalar turbulence in high dimensions
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Exploiting a Lagrangian strategy we present a numerical study for both perturbative and nonperturbative
regions of the Kraichnan advection model. The major result is the numerical assessment of the first-order 1/d
expansion by Chertkov, Falkovich, Kolokolov, and Lebedev@Phys. Rev. E52, 4924 ~1995!# for the fourth-
order scalar structure function in the limit of high dimensiond’s. In addition to the perturbative results, the
behavior of the anomaly for the sixth-order structure functions versus the velocity scaling exponent,j, is
investigated and the resulting behavior is discussed.
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A first principles theory of turbulent advection was ve
recently developed in the framework of the passive sc
model introduced by Kraichnan@1,2# where the velocity field
advecting the scalar is Gaussian in space and white in
~i.e.,d-correlated!. The main feature of such model is that i
statistical description can be obtained from the solution o
set of closed linear partial differential equations for t
equal-time correlation functions@1#.

It was conjectured by Kraichnan@2# that, despite the clo-
sure of the equations for the equal-time correlation functio
the system should display anintermittent behavior. This
means@3# that the scaling exponentsz2n of the 2n-order
scalar structure functionsS2n are anomalous, namely,S2n
[^@u(r ,t)2u(0,t)#2n&}r z2n with z2n,nz2 as r goes to
zero. This is in sharp contrast with thenormal scalingz2n
5nz2 predicted on the basis of mean-field dimensional
guments.

Intermittent behavior was subsequently established
Gawȩdzki and Kupiainen @4#, Chertkov et al. @5#, and
Shraiman and Siggia@6,7#. Anomalous scaling of the struc
ture functions appears because of the presence of zero m
of the equations for the correlation functions@4–9#.

The second-order structure function was solved exactl
Ref. @2# and it does not show any anomaly. Corrections
normal scaling start to appear for the fourth-order struct
functions~the third, when scalar fluctuations are sustained
a large-scale gradient@10#!. The anomalous exponents ha
been up to now computed only perturbatively around lim
cases where the structure functions of the Kraichnan mo
are known and display normal scaling. The correspond
perturbative regions are: smallj ’s @4,11#, large d’s @5,9#,
andj close to the Batchelor limitj52 @6,7,12,13#, j being
the scaling exponent of the advecting velocity field andd the
dimension of the space. The first two expansions are reg
while for the third one the relevant small parameter sho
be A22j. This is due to the preservation of the colline
geometry in the Batchelor limit, leading to an angular no
uniformity in the perturbation analysis@14#.

The scaling behavior of high order structure functions w
investigated by means of instanton calculus@15#. The solu-
tions obtained up to now predict the saturation to a cons
value of the scaling exponentszn’s asn becomes large@16–
18#.
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It is of great interest both to develop efficient numeric
strategies to test the predictions of the available perturba
theories ~and thus to give numerical confirmations of th
mechanisms responsible for the emergence of intermitten!
and to investigate the nonperturbative regions, still not co
pletely accessible by analytical approaches. Exploiting a n
numerical strategy such program was pursued in Refs.@19–
21# ~see also the review paper@22#! where, in particular, the
behavior of the anomalys2n[nz22z2n was studied as a
function ofj for n52 both in two and three dimensions. Th
numerical experiments confirmed the perturbative pred
tions for j→0 andj→2. However, due to the difficulty of
the numerical simulations no results were available for
behavior ofs2n as a function ofj for moments higher than
the fourth and far from the two above perturbative regions
numerical study of the curves6 versusj in the nonpertur-
bative region of the Kraichnan model is one of the aims
the present Rapid Communication.

The second aim is the investigation of the Kraichn
model in large spatial dimensions. The 1/d expansion re-
ceived solely a partial numerical confirmation for the thir
order structure function@23#. The value ofd investigated in
Ref. @23# was not large enough to reach the perturbat
regime for the fourth-order structure function and thus
verify the perturbative prediction of Ref.@5#. This is a sec-
ond goal of the present paper. Exploiting the Lagrang
strategy presented in Refs.@19,20# we present two sets o
numerical simulations which make possible the numeri
assessment of the 1/d expansion of Ref.@5#. We found that,
for j50.8, the value ofd at which the perturbative regim
studied in Ref.@5# takes place isd;30. The latter value
reduces asj decreases, being of the order of 25 forj50.6.

Let us briefly recall the Kraichnan advection model@1,2#.
In this model the velocity fieldv5$va ,a51, . . . ,d% advect-
ing the scalar is incompressible, isotropic, Gaussian in sp
white-noise in time; it has homogeneous increments w
power-law spatial correlations and a scaling exponentj in
the range 0,j,2:

^@va~r ,t !2va~0,0!#@vb~r ,t !2vb~0,0!#&52d~ t !Dab~r !,
~1!

where
©2000 The American Physical Society02-1
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Dab~r !5D0r jF ~j1d21!dab2j
r ar b

r 2 G . ~2!

The specific form inside the squared brackets is dictated
the incompressibility condition onv.

The nonintermittent velocity field defined by Eq.~1! ad-
vects a scalar fieldu

] tu1v•­u5k ]2u1 f ~3!

of which we want to investigate the statistical properties
lated to intermittency. Heref is an external forcing andk is
the molecular diffusivity.

The forcing term permits us to attain a stationary st
defined by the balance between production of scalar varia
~related tof ) and its dissipation~related tok]2u). The net
result is that̂ u2& is finite in the steady state.

FIG. 1. Three-dimensional sixth-order structure functionsS6

versusL for j50.9 ~top! andj51.5 ~bottom!. The dashed straigh
lines are the best fit slopes calculated in the scaling region. T
values give the anomalies reported in Fig. 2~upper curve!. Number
of realizations;107.
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We shall assume the~random! forcing f of zero mean,
isotropic, Gaussian, white-noise in time and homogeneo
Its correlation is specified by:

^ f ~r ,t ! f ~0,0!&5x~r /L ! d~ t !, ~4!

with x(0).0 andx(r /L) a rapidly decreasing function fo
r @L whereL is the ~forcing! integral scale.

Rather than integrating the partial stochastic differen
equation~3! ~that is a prohibitive task already in two dimen
sions due to thed correlation ofv), we exploit the Lagrang-
ian formulation of the passive scalar dynamics as in Re
@19,20# in order to simulate particle trajectories by Mon
Carlo methods.

We recall that when such method is adopted the eva
tion of structure functions is reduced to the study of t
statistical properties of the random variable describing
time spent by pairs of particle with mutual distance less th
the integral scaleL. Generally, the distance between pairs
particles tends to increase with the elapsed time but, oc
sionally, particles may come very close and stay so; the p
nomenon is the source of scaling anomalies. The main
vantage of the Lagrangian strategy is that one does not h
to generate the whole velocity field, but just the velocity fie
over the Lagrangian trajectories. Simulations in very hi
space dimensions as well as the investigation of high-or
moments become thus feasible.

We now present results for structure functions up to si
order. The three-dimensional results relative to the four
order structure functions have been already published in R
@19#. They will be reported in the following for compariso
with our new data.

The L dependence ofS6(r ;L) is shown for the three-
dimensional case in Fig. 1 forj50.9 ~top! andj51.5 ~bot-

ir

FIG. 2. Anomaly s6[3z22z6 for the sixth-order structure
functions in three dimensions~upper curve! and, for comparison,
thes4 curve in Ref.@19# ~lower curve!. The dashed straight line on
the left is the first-order predictions6512j/5 by Bernardet al. @8#.
Notice the shift on the left of the maximum of thes6 curve with
respect to the maximum ofs4.
2-2
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FIG. 3. Fourth-order structure
functions forj50.8 andd ranging
from 5 to 30. Dashed straight line
represent the anomaly from th
1/d expansion by Chertkovet al.
@5#. Number of realizations;106.
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tom!. Similar plots have been obtained also for other valu
of j. In both cases the scaling region is indicated by a das
straight line, the slope of which yields the anomalys6
[3z22z6. The measured slopes forj50.9 andj51.5 are
s650.9160.03 ands650.5860.02, respectively. The erro
bars are obtained by analyzing the fluctuations of local s
ing exponents over smaller ratios of values forL. As ex-
plained in Ref.@20# the number of realizations needed
obtain high quality scaling as the ones displayed in@19# in-
creases rapidly with decreasingj. This is the reason why we
restricted our analysis to the intervalj>0.5.

The results for the anomalies versusj are summarized in
Fig. 2. The upper curve refers tos6, and the lower curve to
s4 ~the latter has been already published in Ref.@19#!.

Some remarks on the behavior ofs6 are worth mention-
ing. First, we note that whenj decreases from 2 to 0 th
anomalys6 grows at first, achieves a maximum, and fina
decreases as in the case ofs4.

We have evidence thats6 tends to vanish forj→0 as
follows from the perturbative predictions@11,8# the leading
order of whichs6512j/5 is shown as a dashed straight lin
on the left-hand side of Fig. 2. The fact that the anomaly
S6 is higher than the one forS4 is an immediate consequenc
of Hölder inequalities@3#.

More interesting is the fact that the maximum of t
anomaly occurs for a value ofj which for S6 is smaller than
for S4. This can be explained as follows. Nearj50 the
dynamics is dominated by the nearly ultraviolet-diverge
eddy diffusion. The latter arises from small-scale fluctuatio
averaged over time scales much larger than the typical o
Large fluctuations are thus averaged out and appear stro
01530
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FIG. 4. Anomaliess4 versusd for j50.6 andj50.8. Dashed
lines are the anomalies 4j/d from the O(1/d) perturbation theory
of Ref. @5#.
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depleted. On the contrary, nearj52 the dynamics is domi-
nated by the nearly infrared-divergent stretching. No aver
ing of the large fluctuations now takes place and the
result is that they strongly contribute to the scalar statist
Since higher moments are more sensitive to large fluc
tions than the lower ones, one expects stretching to domi
the dynamics for wider ranges ofj as the ordern of the
moment increases. As a consequence the value ofj where
the effects of stretching and diffusion balance~i.e., where the
maximum of the anomaly is expected! should move toward
the left asn increases in agreement with the results repor
in Fig. 2. Let us now turn to the behavior of fourth-ord
structure functions for large space dimensions. In such li
the first-order perturbative prediction in 1/d gives for the
fourth-order structure functions the anomaly 4j/d @5,9#. The
Lagrangian strategy allows us to verify numerically the p
turbative prediction.

We performed two sets of simulations forj50.6 and
j50.8 and different spatial dimensions,d, from 5 to 30. The
fourth-order structure functions ford55, 10, 20, and 30
are shown in Fig. 3 forj50.8. Similar scaling laws have
been observed also forj50.6. Dashed straight lines repre
sent the slopes 4j/d. For d530 the anomaly obtained from
numerical simulations~i.e., the slopes of the curve wit
circles! is practically indistinguishable from the perturbativ
expression. The discrepancy increases rapidly asd reduces.
,
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The results are summarized in Fig. 4, where the anomalys4
is shown as a function ofd for j50.6 andj50.8. The fact
that forj50.6 the perturbative regime starts for a value od
(;25) lower than the one atj50.8 (d;30) is the conse-
quence of the fact that the small parameter in the pertu
tion theory is}1/@d(22j)# rather than 1/d.

In conclusion, we verified the 1/d expansion for the
fourth-order structure functions. We presented two sets
simulations corresponding to two different values of the v
locity scaling exponentj. Forj50.8 the perturbative regime
sets in ford;30. This value reduces atd;25 for j50.6.
The result is expected as 1/@d(22j)# is the relevant small
parameter in the perturbation theory. We also studied
behavior of the anomaly for the sixth-order structure fun
tions versus the velocity scaling exponentj. We identified
and discussed two competing mechanisms which control
position of the maximum of the anomaly along thej axis.
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