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Passive scalar turbulence in high dimensions
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Exploiting a Lagrangian strategy we present a numerical study for both perturbative and nonperturbative
regions of the Kraichnan advection model. The major result is the numerical assessment of the firsdorder 1/
expansion by Chertkov, Falkovich, Kolokolov, and LebedBhys. Rev. B52, 4924 (1995] for the fourth-
order scalar structure function in the limit of high dimensibs. In addition to the perturbative results, the
behavior of the anomaly for the sixth-order structure functions versus the velocity scaling expfnient,
investigated and the resulting behavior is discussed.
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A first principles theory of turbulent advection was very It is of great interest both to develop efficient numerical
recently developed in the framework of the passive scalastrategies to test the predictions of the available perturbation
model introduced by Kraichndr,2] where the velocity field theories(and thus to give numerical confirmations of the
advecting the scalar is Gaussian in space and white in timmechanisms responsible for the emergence of intermitjency
(i.e., 5-correlated. The main feature of such model is that its and to investigate the nonperturbative regions, still not com-
statistical description can be obtained from the solution of gletely accessible by analytical approaches. Exploiting a new
set of closed linear partial differential equations for thenumerical strategy such program was pursued in R&8-
equal-time correlation functiord]. 21] (see also the review papgt2]) where, in particular, the

It was conjectured by Kraichndr2] that, despite the clo- behavior of the anomalyr,,=nl,—{,, was studied as a
sure of the equations for the equal-time correlation functionsfunction of ¢ for n=2 both in two and three dimensions. The
the system should display amtermittent behavior. This numerical experiments confirmed the perturbative predic-
means[3] that the scaling exponents,, of the 2n-order tions for é—0 andé—2. However, due to the difficulty of
scalar structure functionS,,, are anomalous namely,S,, the numerical simulations no results were available for the
=([6(r,t)— 6(0,t)]>")xrén with {,,<n¢, asr goes to behavior ofc,, as a function of for moments higher than
zero. This is in sharp contrast with tm®rmal scaling{,,  the fourth and far from the two above perturbative regions. A
=n{, predicted on the basis of mean-field dimensional arnumerical study of the curveg versusé in the nonpertur-

guments. bative region of the Kraichnan model is one of the aims of
Intermittent behavior was subsequently established byhe present Rapid Communication.
Gawglzki and Kupiainen[4], Chertkov et al. [5], and The second aim is the investigation of the Kraichnan

Shraiman and Siggig6,7]. Anomalous scaling of the struc- model in large spatial dimensions. Thed l¢xpansion re-
ture functions appears because of the presence of zero modaesived solely a partial numerical confirmation for the third-
of the equations for the correlation functiof?s-9]. order structure functioh23]. The value ofd investigated in

The second-order structure function was solved exactly irRef. [23] was not large enough to reach the perturbative
Ref. [2] and it does not show any anomaly. Corrections toregime for the fourth-order structure function and thus to
normal scaling start to appear for the fourth-order structureverify the perturbative prediction of Reff5]. This is a sec-
functions(the third, when scalar fluctuations are sustained byond goal of the present paper. Exploiting the Lagrangian
a large-scale gradiefi0]). The anomalous exponents have strategy presented in Refgl9,2(0] we present two sets of
been up to now computed only perturbatively around limitnumerical simulations which make possible the numerical
cases where the structure functions of the Kraichnan modelssessment of thedLexpansion of Ref[5]. We found that,
are known and display normal scaling. The correspondindor £=0.8, the value ofl at which the perturbative regime
perturbative regions are: smalls [4,11], larged’s [5,9], studied in Ref.[5] takes place isl~30. The latter value
and¢ close to the Batchelor limif=2 [6,7,12,13, £ being  reduces ag decreases, being of the order of 25 for 0.6.
the scaling exponent of the advecting velocity field drttie Let us briefly recall the Kraichnan advection mofigR2].
dimension of the space. The first two expansions are regulam this model the velocity field={v,,a=1, ... d} advect-
while for the third one the relevant small parameter shouldng the scalar is incompressible, isotropic, Gaussian in space,
be y2—£&. This is due to the preservation of the collinear white-noise in time; it has homogeneous increments with
geometry in the Batchelor limit, leading to an angular non-power-law spatial correlations and a scaling exporéeim
uniformity in the perturbation analysjd44]. the range B<¢<2:

The scaling behavior of high order structure functions was
investigated by means of instanton calculas]. The solu-  ([v,(r,t)=v (0,0 ][v4(r,t) —v 5(0,00]) =28(t)D (1),

tions obtained up to now predict the saturation to a constant (1)
value of the scaling exponengs’s asn becomes larggl6—
18]. where
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FIG. 1. Three-dimensional sixth-order structure functids

versusL for €=0.9 (top) and £= 1.5 (bottom). The dashed straight
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FIG. 2. Anomaly o0g=3¢,— (g for the sixth-order structure
functions in three dimension@pper curvg and, for comparison,
the o, curve in Ref[19] (lower curve. The dashed straight line on
the left is the first-order predictiomg= 12 £/5 by Bernarcet al.[8].
Notice the shift on the left of the maximum of the curve with

respect to the maximum af,.

We shall assume th&andon) forcing f of zero mean,
isotropic, Gaussian, white-noise in time and homogeneous.

Its correlation is specified by:

(f(r,t) £(0,00) = x(r/L) (1), (4)

with x(0)>0 and x(r/L) a rapidly decreasing function for

r>L wherel is the (forcing) integral scale.

Rather than integrating the partial stochastic differential
equation(3) (that is a prohibitive task already in two dimen-
sions due to th& correlation ofv), we exploit the Lagrang-

lines are the best fit slopes calculated in the scaling region. Theilan formulation of the passive scalar dynamics as in Refs.

values give the anomalies reported in Figupper curvgé Number
of realizations~ 10,

: Fal g
Dap(r)=Dor (§+d—1)5aﬁ—§r—2 : 2

[19,2Q in order to simulate particle trajectories by Monte
Carlo methods.

We recall that when such method is adopted the evalua-
tion of structure functions is reduced to the study of the
statistical properties of the random variable describing the
time spent by pairs of particle with mutual distance less than
the integral scalé. Generally, the distance between pairs of

The specific form inside the squared brackets is dictated bparticles tends to increase with the elapsed time but, occa-
sionally, particles may come very close and stay so; the phe-

the incompressibility condition ow.
The nonintermittent velocity field defined by Ed) ad-

vects a scalar field

3,0+V- 0=k 3?0+ f (3)

nomenon is the source of scaling anomalies. The main ad-
vantage of the Lagrangian strategy is that one does not have
to generate the whole velocity field, but just the velocity field
over the Lagrangian trajectories. Simulations in very high
space dimensions as well as the investigation of high-order

moments become thus feasible.
We now present results for structure functions up to sixth

of which we want to investigate the statistical properties re-
order. The three-dimensional results relative to the fourth-

lated to intermittency. Heréis an external forcing and is

order structure functions have been already published in Ref.

the molecular diffusivity.
The forcing term permits us to attain a stationary statg19]. They will be reported in the following for comparison

defined by the balance between production of scalar varianogith our new data.
The L dependence ofg4(r;L) is shown for the three-

(related tof) and its dissipatiorrelated toxd%6). The net

result is that 6°) is finite in the steady state.

dimensional case in Fig. 1 f@gr=0.9 (top) and ¢=1.5 (bot-
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FIG. 3. Fourth-order structure
functions foré=0.8 andd ranging
from 5 to 30. Dashed straight lines
represent the anomaly from the

1/d expansion by Chertkoet al.
[5]. Number of realizations- 10°.
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tom). Similar plots have been obtained also for other values
of £. In both cases the scaling region is indicated by a dashed
straight line, the slope of which yields the anomaly
=3{,— {s. The measured slopes fg=0.9 andé=1.5 are 05
05=0.91+0.03 andog=0.58+ 0.02, respectively. The error
bars are obtained by analyzing the fluctuations of local scal- 04
ing exponents over smaller ratios of values forAs ex-
plained in Ref.[20] the number of realizations needed to 03}
obtain high quality scaling as the ones displayedlif] in- e
creases rapidly with decreasigg This is the reason why we 02
restricted our analysis to the intervéd=0.5.
The results for the anomalies versgigre summarized in AN
Fig. 2. The upper curve refers tg;, and the lower curve to
o, (the latter has been already published in R&€]). 00,
Some remarks on the behavior @f are worth mention- (a)
ing. First, we note that wheg decreases from 2 to 0 the 08
anomalyog grows at first, achieves a maximum, and finally '
decreases as in the casedf.
We have evidence thatg tends to vanish fo€—0 as 06 |
follows from the perturbative predictiorid1,8] the leading
order of whichog=12£/5 is shown as a dashed straight line 504 |
on the left-hand side of Fig. 2. The fact that the anomaly for
Sg is higher than the one f@, is an immediate consequence
of Holder inequalitieq 3]. 0.2 r
More interesting is the fact that the maximum of the
anomaly occurs for a value @fwhich for Sg is smaller than 00 -

for S;. This can be explained as follows. Ne&=0 the
dynamics is dominated by the nearly ultraviolet-divergent

£=0.6

5 10 15 20 25 30
Spatial dimension d

&=038

(b)

1I0 20 30
Spatial dimension d

eddy diffusion. The latter arises from small-scale fluctuations FIG. 4. Anomalieso, versusd for £=0.6 andé=0.8. Dashed
averaged over time scales much larger than the typical onelines are the anomalieséAd from the O(1/d) perturbation theory

Large fluctuations are thus averaged out and appear strongdy Ref. [5].
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depleted. On the contrary, neé+ 2 the dynamics is domi- The results are summarized in Fig. 4, where the anomaly
nated by the nearly infrared-divergent stretching. No averagis shown as a function af for §{=0.6 and§=0.8. The fact

ing of the large fluctuations now takes place and the nethat for§=0.6 the perturbative regime starts for a valuelof
result is that they strongly contribute to the scalar statistics(~25) lower than the one a&=0.8 (d~30) is the conse-
Since higher moments are more sensitive to large fluctug@Uence of the fact that the small parameter in the perturba-
tions than the lower ones, one expects stretching to dominaf®" theory ise<11d(2-£)] rather than .

the dynamics for wider ranges @f as the ordem of the In conclusion, we venﬂed the d/expansion for the
. fourth-order structure functions. We presented two sets of
moment increases. As a consequence the valug where

. e . simulations corresponding to two different values of the ve-
the e_szects of stretching anq diffusion balarice., where the locity scaling exponeng. For é=0.8 the perturbative regime
maximum of the anomaly is expecteshould move toward = sets in ford~30. This value reduces at~25 for £=0.6.

the left asn increases in agreement with the results reportedrhe result is expected as[#(2— £)] is the relevant small

in Fig. 2. Let us now turn to the behavior of fourth-order parameter in the perturbation theory. We also studied the
structure functions for large space dimensions. In such limibehavior of the anomaly for the sixth-order structure func-
the first-order perturbative prediction indlgives for the tions versus the velocity scaling exponeéntWe identified
fourth-order structure functions the anomalg/d [5,9]. The and discussed two competing mechanisms which control the
Lagrangian strategy allows us to verify numerically the per-Position of the maximum of the anomaly along thexis.
turbative prediction.

We performed two sets of simulations f@=0.6 and We thank A. Celani, G. Falkovich, and M. Vergassola for
¢=0.8 and different spatial dimensiorg;,from 5 to 30. The  stimulating discuussions. A.M. was partially supported by
fourth-order structure functions fat=5, 10, 20, and 30 INFM Project No. GEPAIGGO1. P.M.G. was supported by
are shown in Fig. 3 fo¥=0.8. Similar scaling laws have European Grant No. ERB4001GT962476. Part of this work
been observed also fd&=0.6. Dashed straight lines repre- was done during the research progr&mysics of Hydrody-
sent the slopes&d. Ford=30 the anomaly obtained from namic Turbulencet the Institute for Theoretical Physics of
numerical simulationg(i.e., the slopes of the curve with the University of California, Santa Barbara. A.M. thanks
circles is practically indistinguishable from the perturbative them for their warm hospitality. Simulations were performed
expression. The discrepancy increases rapidlg esduces.  within the INFM Parallel Computing Initiative.
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